

Master thesis presentation

Blade bulbous-bow concept application research using commercial CFD software

Author:

Mukhitdin Kakenov

Supervisor:

Prof.Dario Boote, University of Genova

Mukhitdin KAKENOV Kazakhstan Marine Engineer

- <u>Previous education</u>: Saint-Petersburg State Marine Technical University (SMTU)
- <u>Field of interest</u>: Seakeeping; Hull Optimization; Ship Theory; Safe Operation of a ship, marine technologies in maritime area
- <u>Seeking Career & objectives</u>: Naval Designer, Project Engineer, Research Engineer in hull form and ship structure optimization study branches.

Example 1. Benetti's F-125

http://www.charterworld.com/news/f125-yacht-hull-arrives-benetti-yard-italys-viareggio

F-125

F-125

Length on waterline – 31.0 meters

Maximum beam – 8.23 meters

Half load draught – 2.01 meters

High-speed range – 17.5-22 knots

https://www.pressreader.com/italy/superyacht/20170109/282428463876372

F-125. Now how it looks on a serial ship:

https://sandpeoplecommunication.wordpress.com/2013/12/16/benetti-news-from-the-yard-november-december-2013

Next example: ILUMEN 28M

http://robbreport.com/motors/marine/dominators-ilumen-now-more-spacious-and-preparing-launch-231479/

ILUMEN 28M

Length on waterline – 28 meters

Maximum beam – 8.23 meters

Half load draught – 1.85 meters

High-speed range – 17-29 knots

https://www.superyachttimes.com/yacht-news/dominator-ilumen-28m-taking-shape-in-italy

ILUMEN 28M in towing tank

https://www.pressreader.com/italy/superyacht/20170109/282428463876372

ILUMEN 28M in towing tank

ILUMEN 28M in towing tank

The Object of Interest

Rhinoceros software was used to build the model of the yacht

The Object of Interest

CFD

[Star-CCM+ CFD software was chosen]

- Set rules of physics
- Change a flow as ever you want
- Change a ship and an experimental domain models so many times as you need

What mesh size is better? Calculation quality vs. Time spent

The lower the cell size the more accurate the results of simulation

HOWEVER: the lower the cell size, the longer the time spent to compute a problem. Where is the golden middle???

^{*}Image has been taken from the Star-CCM+ 11 ver. manual

 Let's define some geometrical parameter to use it as a relative value:

In Star-CCM+ it is a "Base size" argument

What is it?

It's a value, percentage of which may characterize an elemental size (length) of a computing cell

 How long should be this length? => any easy to operate with setting different cells sizes

Kelvin waves

Gathered reference DATA: Resistance components (17 knots)

Gathered reference DATA: ship motions (17 knots)

REFERENCE DATA COLLECTED

Changing the bulbous bow to a blade one

Features of the blade bow concept should be noticed:

Blade bow. First design

Blade bow. First design

Blade bow. First design

Blade bow. First design

Blade bow, 1st design. Produced wave profile on 17 knots forwarding

17 knots

17 knots

17 knots. Blade bow

Changing the bulbous bow to a blade one

Features of the blade bow concept should be noticed:

Friction comparison

Pressure drag comparison

Sinkage comparison

Trim comparison

So, what do we have now...

 Trim had been changed (involving or separately from the sinkage - ?)

 Pressure drag increased – in what areas of the bow?

Frictional drag is almost the same

CONCLUSION

- The bow shape gives direct influence on ship motions behavior. Changing the bow we will change the trim and sinkage, in particular;
- The pressure drag of the yacht's new shape had been increased – how to reduce it, modifying the bow? The new problem to future additional research;
- The blade bow does not function as the initial one does not help against wave producing effect. How to optimize the bow in connection to this aspect? This is a new problem appeared – to be studied in optimization study subject.

